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Abstract 

Background: Lung cancer represents the leading cause of cancer-related deaths worldwide and novel 
therapeutic approaches targeting crucial pathways are urgently needed to improve its treatment. 
Inflammation plays a critical role in multistage tumor development and increased evidence has 
supported the involvement of cyclooxygenase-2 expression in carcinogenesis. We investigated the 
potential use of COX-2 inhibitors in cancer proliferation and apoptosis. 
Methods: Celecoxib, rofecoxib, etoricoxib, meloxicam, ibufrofen and indomethacin are the COX-2 
inhibitors included in this study. Docetaxel and Cisplatin are the chemotherapeutic agents that we 
combined with COX-2 inhibitors. Lung cancer cell lines (NCI-H1048-Small cell lung cancer, A549- 
Non-small cell lung cancer) were purchased from ATCC LGC Standards. At indicated time-point, 
following 24h and 48h incubation, cell viability and apoptosis were measured with Annexin V staining by 
flow cytometry. Statistical analysis was performed by GraphPad Prism. 
Results: In Small cell lung cancer cells, following 24h incubation, combinations of docetaxel and 
meloxicam, docetaxel and ibuprofen, docetaxel and indomethacin, showed increased apoptosis when 
compared to docetaxel alone (p<0.0001). In Non-small cell lung cancer cells, the 24h incubation was not 
enough to induce satisfactory apoptosis, but following 48h incubation, docetaxel plus indomethacin 
showed more cytotoxicity when compared to docetaxel alone (p<0.0001). In addition, the combination 
of cisplatin plus indomethacin was the only combination to be found with higher cytotoxicity when 
compared to cisplatin alone after 48h treatment (p<0.0001). 
Conclusion: Depending on the drug, the synergistic effect of COX-2 inhibitors plus chemotherapeutic 
agents has been demonstrated in lung cancer. Our suggestion is that COX-2 inhibitors could be used as 
additive and maintenance treatment in combination to antineoplastic agents in lung cancer patients. 

Key words: COX-2 inhibitors, lung cancer, in vitro. 

Introduction 
 Lung cancer is still the most common type of 

cancer and the leading cause of cancer-related deaths 
worldwide [1]. Lung cancer is subdivided into two 
histological groups: Small Cell Lung Cancer (SCLC) 

and Non-Small Cell lung Cancers (NSCLC) which 
accounts for almost 85% of all lung cancers [2]. 
Small-cell lung carcinoma has an aggressive clinical 
course and metastases at diagnosis and widespread 
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dissemination. Although a platinum-etoposide 
combination combined with thoracic and prophylactic 
cranial irradiation has been shown to improve 
outcome in limited-stage SCLC (TxNxM0)) and in 
subgroups of extensive-stage SCLC (Tx,Nx,M1a/b) 
the clinical outcome for SCLC remains discouraging 
[3]. Similarly, NSCLC appears in the advanced stage 
at diagnosis in the majority of the patients with no 
surgical treatment option. Classical chemotherapy 
(platinum-doublet, taxanes, gemcitabine, pemetrexed) 
results in modest efficacy in NSCLC. At this point, 
molecular targeted drugs concerning the 
identification of molecular biomarkers including 
EGFR inhibitors, have led to personalized therapy in 
NSCLC, but mechanisms of resistance remain to be 
elucidated [4]. Furthermore, multimodal therapeutic 
strategy has become an important treating option for 
NSCLC patients, however, in several studies, two or 
more drug combinations were proven to have 
superior efficacy but at the expense of added toxicity 
[5] [6]. Thus, novel therapeutic approaches targeting 
crucial pathways are urgently needed to improve the 
treatment of lung cancer.  

 The last fifteen years, it has become clear that 
inflammation plays a critical role in multistage tumor 
development [7], and some of the molecular 
mechanisms involved have been elucidated [8]. 
Several studies have supported the involvement of 
cyclooxygenase-2 expression in carcinogenesis [9-13]. 
Indeed, increased expression of COX-2 and 
antiproliferative effects of COX-2 inhibitors were 
found in several types of cancer such as osteosarcoma 
[14], colorectal carcinomas [15, 16], urinary bladder 
cancer [17], breast cancer [18], prostate cancer [19] and 
lung cancer [11, 20]. Furthermore, preclinical studies 
in vivo have supported the benefit of COX-2 
inhibition in cancer [21-25]. In addition, selective 
COX-2 inhibitors such as celecoxib have been 
included in clinical trials in non-small-cell lung cancer 
patients showing promising results [26-28]. Moreover, 
results from another clinical trial in adenoma cancer 
patients showed significant benefit effect in the 
celecoxib group of patients [29]. 

Taken together, these data have demonstrated a 
potential use of COX-2 inhibitors in cancer 
proliferation and apoptosis. In this study, we 
investigated the cytotoxicity of combined treatment of 
COX-2 inhibitors with anticancer agents on Small Cell 
Lung Cancer and Non-small cell lung cancer in vitro.  

Materials and Methods 
Cell cultures and reagents 

The small cell lung cancer cell line [NCI-H1048 
[H1048], ATCC® CRL-5853™) was purchased from 
ATCC LGC Standards. NCI-H1048 cells were cultured 

in ATCC-formulated Dulbecco’s Modified Eagle’s 
Medium (DMEM):F12 Medium culture medium, 
supplemented with 5% Fetal Bovine Serum (FBS) and 
with the following components, 0.005 mg/ml Insulin, 
0.01 mg/ml Transferrin, 30nM Sodium selenite (final 
conc.), 10nM Hydrocortisone (final conc.), 10nM 
beta-estradiol (final conc.), extra 2mM L-glutamine 
(for final conc. of 4.5 mM), 5% fetal bovine serum 
(final conc.), all purchased from SIGMA. The 
non-small cell lung cancer cell line (A549, 
ATCC® CCL185™) was also purchased from ATCC 
LGC Standards. A549 cell line was cultured in 
DMEM, supplemented with 5% FBS, 1mM 
Penicillin-Streptomycin and 2mM L-glutamin, all 
purchased from SIGMA. 

Lung cancer cell lines were incubated at 37°C in 
a humidified atmosphere containing 5% CO2 [30] and 
cultured in Coming's tissue culture flasks (25 and 75 
cm2) according to the manufacturer's protocol. After 
cultures reached confluence, by microscope 
observation were then subcultured. Cells were 
detached with trypsin (1:250) 2.5 % and passaged. The 
indicated cell lines were seeded in 25 cm2 flasks 0.7 × 
106 cells at a seeding density of 106 cells for each cell. 
At confluence, at indicated time point, test 
compounds were added according to our protocol 
and after 24 h or 48h incubation apoptosis was 
measured (Table 1).  

 

Table 1: Protocol of the experiment. 
Incubation of the drugs in lung cancer cell lines 
1. Addition if chemotherapeutic agents alone for 2h  
2. Addition of COX-2 inhibitors alone for 2h  
3. Addition of combinations: COX-2 inhibitors + chemotherapeutic 
agents for 2h 
4. After 24h and 48h incubation, apoptosis was measured  

 

Test compounds  
Celecoxib (Celebrex® 100mg), rofecoxib (Vioxx® 

25mg), etoricoxib (Arcox® 90mg), meloxicam 
(Movatec® 7.5mg), ibufrofen (Brufen® 200mg) and 
indomethacin (Fortathrin® 75mg) are the COX-2 
inhibitors included in this study. These compounds 
were tested in several concentrations (5μM, 10μM, 
20μM, 40μM, 80μM, 100μM, 200μM). Docetaxel 
(10mg/ml, 140mg/5.5L) and Cisplatin (1mg/ml, 
90mg/5.5L) at concentration of 25μM are the 
chemotherapeutic agents that we combined with 
COX-2 inhibitors.  

Analysis of the apoptotic cells with ANNEXIN 
V/ PI 

Annexin V staining is used as a probe to detect 
cells that have expressed phosphatidylserine (PS) on 
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the cell surface, an event found in apoptosis as well as 
other forms of cell death. Propidium iodide (PI) is 
used as a DNA stain for both flow cytometry, to 
evaluate cell viability or DNA content in cell cycle 
analysis 17, and microscopy to visualize the nucleus 
and other DNA containing organelles. It can be used 
to differentiate necrotic, apoptotic and normal cells. 
The Annexin V kit used in this study was purchased 
from Immunostep (Salamanca, Spain). Data were 
acquired on a FACS Calibur (BD, Franklin Lakes, NJ, 
USA) instrument, and analyzed using the CellQuest 
Pro v6 software (BD) or FlowJo software vX.0.7 (Tree 
Star).  

Statistical analysis 
Data are presented as means ± standard error of 

the mean (SEM). Multiple comparisons between 
experimental groups for one or more variables were 
performed using one- or two-way ANOVA, 
respectively, with Tukey’s post-hoc test. Values of 
p≤0.05 were considered as statistically significant. All 
the analyses were undertaken using PRISM version 
6.01 (GraphPad software, version 6, San Diego, CA. 
USA). 

Results 
In SCLC, following 24h and 48h incubation, 

docetaxel was found more cytotoxic than cisplatin 
(p<0.0001), whereas in NSCLC only after 48h 
incubation. The combination of docetaxel and COX-2 
inhibitors reduced viability significantly in both cell 
lines when compared to docetaxel alone. In contrast, 
the combination of cisplatin and COX-2 inhibitors was 
not as cytotoxic when compared to cisplatin alone 
except in the case of co-treatment of cisplatin plus 
indomethacin, cisplatin plus meloxicam and cisplatin 
plus ibuprofen in SCLC after 24h incubation 

(p<0.0001). In addition, the cytotoxicity was positively 
associated with drug concentrations, especially in the 
case of celecoxib (160μΜ). Specifically, in SCLC cell 
line, co-treatment of docetaxel and celecoxib (80μΜ 
p<0.0001) reduced viability more than docetaxel alone 
and more than cisplatin and celecoxib co-treatment 
after 24h (40μΜ p<0.05 and 80μΜ p<0.0001) and 48h 
(40μΜ 80μΜ and 160μΜ p<0.0001) incubation (Figure 
1, Table 2). Similarly, combination of docetaxel and 
rofecoxib (40μΜ, p<0.001-24h incubation, p<0.05-48h 
incubation) was more cytotoxic than docetaxel alone. 
Furthermore, cytotoxicity was significantly increased 
in the docetaxel and etoricoxib combination (80μΜ, 
p<0.001) when compared to that of docetaxel alone 
(24h). Combinations (24h) of docetaxel and 
meloxicam (200μΜ, p<0.0001), docetaxel and 
ibuprofen (40μΜ, p<0.0001), docetaxel and 
indomethacin (100μΜ, 200μΜ, p<0.0001), showed 
increased apoptosis when compared to docetaxel 
alone. Following, 48h incubation docetaxel/ 
meloxicam (200μΜ, p<0.01) and docetaxel/ibuprofen 
combinations (40μΜ p<0.001), resulted in an 
increased number of late apoptotic cells (p<0.001) 
when compared to docetaxel alone. After 24h 
incubation, cisplatin/meloxicam, (200μΜ, p<0.01), 
cisplatin/ibuprofen (40μΜ, p<0.0001) and 
cisplatin/indomethacin co-incubation (200μΜ, 
p<0.0001), showed increased apoptotic levels when 
compared with cisplatin alone. No significant 
apoptosis was found on other combinations of 
cisplatin and COX-2 inhibitors after 48h incubation in 
SCLC cell line. Finally, in SCLC, the concentrations of 
COX-2 inhibitors alone (celecoxib 80μΜ, meloxicam 
200μΜ, indomethacin 200μΜ) resulted in increased 
apoptosis when compared to untreated cells 
(p<0.0001, Figure 2, Table 3). 

 

 
Figure 1: Cell viability and apoptosis with Annexin V/Propidium iodide by flow cytometry. Representative data for SCLC, after 24h incubation, 
combinations of cisplatin and docetaxel with celecoxib, rofecoxib, etoricoxib, ibuprofen, meloxicam, indomethacin. 
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Table 2: Means ± standard error of the mean (SEM) of percentages for cell viability and apoptosis with Annexin V/ Propidium iodide by 
flow cytometry in SCLC cell line after 24h incubation with drug combinations (representative data in accordance to Figure 1). 
Drugs Dead % Late Apoptotic % Early Apoptotic % Live % 
Control/ SCLC cells untreated 2±1.5 6 ±1.5 9±1.4 82±3.5 
Cisplatin 25μΜ 3±1.3 5±1 13±2 78±3.3 
Docetaxel 25μΜ 5±3.6 9±2.5 27±1.5 59±4.4 
Celecoxib 80μΜ 9±2 4±1.5 14±1.5 73±2 
Cisplatn + celecoxib 80μΜ 10±3 7±2 16±2 67±1.5 
Docetaxel + celecoxib 80μΜ 15±2 27±3.4 11±2 47±2.5 
Rofecoxib 40μΜ 1±1 3±1.5 6±2 90±2.5 
Cisplatin + rofecoxib 40μΜ 1±0.5 7±3.5 14±8 65±0.5 
Docetaxel + rofecoxib 40μΜ 1±0.5 20±1.4 36±2 44±3.2 
Etoricoxib 80μΜ 9±1.5 4±1 18±2 70±3 
Cisplatin + etoricoxib 80μΜ 7±1 4±1.2 10±1 79±2.5 
Docetaxel + etoricoxib 80μΜ 11±2 28±3 17±3.5 44±2 
Ibufrofen 40μΜ 1±0.5 6±1 14±2 79±3.4 
Cisplatin + ibufrofen 40μΜ 9±1 27±2 11±1 53±3.5 
Docetaxel + ibufrofen 40μΜ 2±0.5 21±2 38±2 39±4 
Meloxicam 200μΜ 8±3 7±2.5 21±1.5 63±3 
Cisplatin + meloxicam 200μΜ 12±1.4 8±1.3 16±2 65±3 
Docetaxel + meloxicam 200μΜ 19±2 39±1.4 7±1 35±3 
Indomethacin 200μΜ 8±1.3 13±2 19±3.1 60±2 
Cisplatin + indomethacin 200μΜ 27±2 16±2 5±1 53±2 
Docetaxel + indomethacin 200μΜ 14±3 42±2.3 15±2 30±2.5 

 

 

Figure 2: Cell viability and apoptosis with Annexin V/Propidium iodide by flow cytometry. Representative data for SCLC, after 24h incubation, celecoxib 
(80μΜ), meloxicam (200μΜ), indomethacin (200μΜ). 

 

Table 3: Means ± standard error of the mean (SEM) of 
percentages for cell viability and apoptosis with Annexin V/ 
Propidium iodide by flow cytometry in SCLC cell line after 24h 
incubation with COX-2 inhibitors alone (representative data in 
accordance to Figure 2). 

Drugs Dead % Late Apoptotic 
% 

Early 
Apoptotic % 

 Live % 

Untreated cells 
SCLC 

2±1.5 6 ±1.5 9±1.4 82±3.5 

Celecoxib 80μΜ  9±2 4±1.5 14±1.5 73±2 
Meloxicam 200μΜ 8±3 7±2.5 21±1.5 63±3 
Indomethacin 
200μΜ 

8±1.3 13±2 19±3.1 60±2 

 

In NSCLC, the 24h incubation was not enough to 
induce satisfactory apoptosis. Results showed 
increased apoptosis particularly after 48h incubation 
of docetaxel plus indomethacin when compared to 
docetaxel alone (p<0.0001). In addition, the 
combination of cisplatin plus indomethacin 
(p<0.0001) was the only combination to be found with 
higher cytotoxicity when compared to cisplatin alone 
after 48h treatment (Figure 3, Table 4). Finally, in 
NSCLC, the concentrations of COX-2 inhibitors alone 
(celecoxib 80μΜ, meloxicam 200μΜ, indomethacin 
200μΜ) resulted in increased apoptosis when 
compared to untreated cells (p<0.0001, Figure 4, 
Table 5). 
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Figure 3: Cell viability and apoptosis with Annexin V/Propidium iodide by flow cytometry. Representative data for NSCLC, after 48h incubation. 
Combinations of cisplatin and docetaxel with indomethacin (200μΜ). 

 
Figure 4: Cell viability and apoptosis with Annexin V/Propidium iodide by flow cytometry. Representative data for NSCLC, after 48h incubation, celecoxib 
(80μΜ), meloxicam (200μΜ), indomethacin (200μΜ). 

 

Table 4: Means ± standard error of the mean (SEM) of 
percentages for cell viability and apoptosis with Annexin 
V/Propidium iodide by flow cytometry in NSCLC cell line after 48h 
incubation with drug combinations (representative data in 
accordance to Figure 3). 

Drugs Dead % Late 
Apoptotic % 

Early 
Apoptotic % 

Live % 

Control/NSCLC cells 
untreated 

10±1.5 2±0.5 5±1.7 86±3 

Cisplatin 25μΜ 9±1.8 5±0.8 5±0.8 82±3 
Docetaxel 25μΜ 16±2.5 4±1.6 12±1 68±4 
Ιndomethacin 200μΜ 6±0.5 14±2.3 13±2.1 67±3.5 
Cisplatin + indomethacin 
200μΜ 

3±0.5 19±1.5 18±1.6 61±2.8 

Docetaxel + 
indomethacin 200μΜ 

8±1.9 13±1.4 21±2 58±2.3 

 

Table 5: Means ± standard error of the mean (SEM) of 
percentages for cell viability and apoptosis with Annexin 
V/Propidium iodide by flow cytometry in NSCLC cell line after 48h 
incubation with COX-2 inhibitors alone (representative data in 
accordance to Figure 4). 

Drugs Dead % Late 
Apoptotic % 

Early 
Apoptotic % 

Live % 

Untreated cells 
NSCLC 

10±1.5 2±0.5 5±1.7 86±3 

Celecoxib 80μΜ  31±3 6±1.5 9±2.6 54±4 
Meloxicam 200μΜ 13±2.9 27±2.7 12±1.8 49±3 
Indomethacin 200μΜ 6±0.5 14±2.3 13±2.1 67±3.5 
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Discussion 
 According to the National Comprehensive 

Cancer Network practice guidelines, the 
etoposide–cisplatin (EC) regimen used concurrently 
with radiotherapy, has been the standard 
chemotherapy for decades for the first-line treatment 
of SCLC [31, 32]. Alternative treatment strategies 
include taxanes (paclitaxel and docetaxel) and 
platinum analogues (carboplatin, cisplatin). Similarly, 
radiotherapy and platinum-based chemotherapy has 
made no progress in the treatment of NSCLC. Clinical 
resistance is considered another obstacle in the 
treatment of NSCLC [33]. Thus, the need for novel 
treatment combinations has widespread interest. 

 For more than 30 years, nonsteroidal 
anti-inflammatory drugs (NSAIDs) have been the 

focus of attention as anticancer agents to reduce the 
clinical signs associated with inflammation [34]. The 
targets of traditional NSAIDs include the 
cyclooxygenases 1 and 2 (COX-1 and COX-2), 
enzymes involved in the production of prostaglandins 
from arachidonic acid. It has been reported that 
long-term use of traditional NSAIDs is associated 
with serious gastrointestinal side effects that have 
been attributed to COX-1 inhibition [35, 36]. As a 
result, COX-2 inhibitors were developed that had 
fewer gastrointestinal side effects according to clinical 
studies [37-41], but had anti-inflammatory activities 
that were similar to those of traditional NSAIDs. In 
the present study, we investigated the synergistic 
effect of COX-2 inhibitors, with chemotherapeutic 
agents, docetaxel and cisplatin on the apoptosis of 
lung cancer cell lines. Figure 5. 

 

 
Figure 5. Mechanism of action of COX-2 inhibitors. 

 
 Traditional NSAIDs are nonselective inhibitors 

of both cyclooxygenase-1 (COX-1) and COX-2 which 
convert arachidonic acid to prostaglandin (H 2). 
COX-2 can generally be upregulated in response to 
cytokines, growth factors, tumor promoters, stress 
and other stimuli in various tissues including lung 
cancer [11]. In cancer, the regulation of COX-2 is 
abolished, so that both enzymes are overexpressed, 
leading to an increase in prostaglandin (PGE2) 
production in these cells [42]. PGE2 via stimulation of 
prostaglandin E2 receptor activates multiple 
pathways resulting in tumor cell proliferation, 
angiogenesis, survival and antiapoptosis [43-46]. In 
lung cancer cells, particularly in adenocarcinoma, 
according to clinical studies, overexpression of COX-2 
is considered to be a negative predictive factor in the 
survival of the subpopulation [47]. Similarly, in colon 

cancer, overexpression of both cyclooxygenases in the 
early adenoma stage leads to one of the first steps for 
its development [48]. The patients showed a 
significant decrease in the multiplicity of polyps and 
induced regression of polyps after they received 
sulindac, a selective COX inhibitor, for 1 year [49-51]. 

 The appearance of increased COX-2 expression 
might be involved in cancer development by 
inhibiting apoptosis, promoting cell division, altering 
cell adhesion and enhancing metastasis stimulating 
neovascularization, antitumor immune responses and 
inhibition of cellular protein synthesis [52]. Since 
traditional NSAIDs block these activities, their 
inhibition of COX-2 activity could be considered for 
their anticancer effects. Besides, apart from these 
mechanisms, according to several reports, COX-2 
independent mechanisms may also participate in the 
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anticancer effects. Furthermore, each traditional 
NSAIDs such as celecoxib and rofecoxib may have 
their own more or less specific COX-independent 
target [53, 54]. In our study, indeed each COX-2 
inhibitor showed different results in lung cancer cell 
lines. In particular, the combinations of meloxicam, 
ibuprofen and indomethacin with the 
chemotherapeutic agents showed more significant 
apoptosis when compared to the other combinations 
in both lung cancer cell lines. Furthermore, the 
combination of COX-2 inhibitors with 
chemotherapeutic drugs showed increased apoptosis 
in a time-dependent manner. SCLC showed higher 
sensitivity to the combination than NSCLC. 

 The use of taxanes in cancer is based on their 
interference with microtubule assembly, impairment 
of mitosis, and changes in the cytoskeleton [55]. They 
also stimulate mitogen-activated protein kinases 
(MAPKs) and the expression of numerous genes 
including COX-2 [56-58]. In particular, there is 
growing evidence that beyond the mechanisms that 
control COX-2 transcription [13], post-transcriptional 
mechanisms are also important [59, 60]. In our study, 
we observed that docetaxel had a synergistic effect 
with all the COX-2 inhibitors when compared with 
docetaxel alone in SCLC and NSCLC in vitro. It has 
been reported that taxanes stimulate COX-2 
expression followed by increased PGE2 production, 
thus, resulting as expected in synergistic effect [13]. 
Indeed, in a phase II clinical trial on NSCLC patients, 
survival benefit with COX-2 inhibitor and 
chemotherapy was demonstrated in patients with 
moderate to high COX-2 expression [28]. Similarly, in 
our study, COX-2 inhibitors showed a synergistic 
effect with docetaxel on NSCLC cell line. However, in 
a recent phase II clinical trial the combination of 
docetaxel and apricoxib (COX-2 inhibitor) as 
second-line therapy on advanced NSCLC patients, 
showed negative results, implying that 
taxanes-driven augmentation of COX-2 expression 
might diminish the effect of COX-2 inhibitors [61].  

 Although, platinum-based doublet 
chemotherapeutic regimens include the primary 
therapeutic method for lung cancer, cisplatin 
resistance is a main clinical problem [33]. Thus, it is 
urgent the need for finding combination drugs to 
overcome this problem. In our study cisplatin 
combinations with COX-2 inhibitors showed 
inconsistent results in both lung cancer cell lines, 
however the synergistic effect was obvious. Similarly, 
in a phase II trial the combination of 
celecoxib plus platinum-based chemotherapy 
as first-line treatment COX-2 positive NSCLC 
patients, confirmed by immunohistochemical staining 
showed promising results [27]. Moreover, another 

phase II study suggested that celecoxib may safely be 
combined with etoposide for the treatment of 
extensive-stage in SCLC [62]. However, recently, 
Chen et al showed that celecoxib reduced an influx of 
cisplatin in gastric cancer in vitro, by antagonizing 
cisplatin-induced cytotoxicity and apoptosis in a 
COX-2 independent manner, suggesting the cautious 
selection of the combination drug with COX-2 
inhibitor [63]. 

 According to Yokouchi et al, results from several 
clinical trials indicate that patients that do not express 
COX-2 may have worse outcomes when treated with 
COX-2 inhibitor, perhaps due to the domination of 
COX-1 pathway in normal cells [64]. This study 
showed the importance to identify the subgroup of 
patients with activated COX-2 pathway. The selection 
of the appropriate method that will best determine the 
efficacy of the combination of COX-2 inhibition with 
chemotherapy is at need. Gitlitz et al attempted to use 
a patient-selection strategy in a randomized 
placebo-controlled study of a COX-2 inhibitor and 
erlotinib in NSCLC. They selected NSCLC patients 
based on a 50% decrease from baseline levels of a 
urinary metabolite of PGE2 (PGEM) in response to 
apricoxib, but the primary endpoint of the trial was 
not met, possibly due to the low cutpoint for the 
decline in PGEM [65]. Reckamp et al evaluated COX-2 
expression in a phase II trial [66] by measuring levels 
of baseline PGEM based on results of their phase I 
trial in NSCLC [67, 68]. They reported that COX-2 
pathway represents a novel mechanism of resistance 
to EGFR TKI therapy in NSCLC patients. Thus, in 
their phase II trial, they demonstrated that erlotinib 
and high-dose celecoxib led to an increase in 
progression free survival in selected patients with 
wild-type EGFR and COX-2 inhibition evaluated by 
elevated baseline PGEM [66]. In other studies, the 
evaluation of COX-2 and EGFR inhibition in small 
sample size and unselected patients in NSCLC 
showed limited benefit [69-72], high lightening the 
need of using biomarkers and genomic data.  

Conclusion 
The synergistic effect of the combination of 

COX-2 inhibitors and chemotherapeutic agents has 
been demonstrated. Our suggestion is that COX-2 
inhibitors could be added as maintenance treatment 
in lung cancer patients. However, in clinical practice 
several issues should be considered for further 
investigation. Examination of genetic and epigenetic 
background and exploration of biomarkers defining a 
subset of lung cancer patients that would benefit by 
these combinations combined with better 
understanding of COX-2 biology would shed more 
light on how to achieve clinical improvement. Cox-2 
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inhibitors have been used with immunotherapeutic 
agents with effectiveness [73, 74], however; more 
trials are necessary for non-small cell lung cancer. 
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